Răspuns :
puncte A₁ , A₂ ,A₃ ,A₄ ,A₅ ,A₆ .A₇ .A₈ ,A₉ , A₁₀
plan = 3 puncte distincte
punctele A₁ si A₂ , cu cele 8 puncte formeaza ; 8 plane
A₁A₂A₃ ; A₁A₂A₄ ; ..............A₁A₂A₁₀
punctele A₁A₃ cu cele 7 puncte formeaza 7 plane
fara A₂
punctele A₁A₄ , fara A₂ si A₃ 6 plane
punctele A₁A₅ , fara A₂,A₃ ,A₄ 5 plane
punctele A₁A₆ , fara A₂ , A₃ ,A₄ ,A₅ 4 plane
punctele A₁A₇ , fara A₂ , A₃ ,A₄ ,A₅ ,A₆ 3 plane
punctele A₁A₈ fara A₂ , A₃ ,A₄ ,A₅ , A₆ , A₇ 2 plane
punctele A₁A₉A₁₀ 1 plan
⇒ 36 plane
fara A₁ , celelalte 9 puncte formeaza 28 plane
fara A₁ , A₂ celelalte 8 puncte formeaza 21 plane
fara A₁ ,A₂ , A₃ 7 15 plane
fara A₁ ,A₂,A₃ ,A₄ 6 10 plane
fara A₁ ,A₂ ,A₃,A₄ ,A₅ 5 puncte 6 plane
fara A₁ ,A₂ , A₃ ,A₄ ,A₅,A₆ 4 puncte 3 plane
fara A₁ , A₂ , A₃ ,A₄ ,A₅ ,A₆ ,A₇ 3 puncte 1 plan
total = 120 plane
plan = 3 puncte distincte
punctele A₁ si A₂ , cu cele 8 puncte formeaza ; 8 plane
A₁A₂A₃ ; A₁A₂A₄ ; ..............A₁A₂A₁₀
punctele A₁A₃ cu cele 7 puncte formeaza 7 plane
fara A₂
punctele A₁A₄ , fara A₂ si A₃ 6 plane
punctele A₁A₅ , fara A₂,A₃ ,A₄ 5 plane
punctele A₁A₆ , fara A₂ , A₃ ,A₄ ,A₅ 4 plane
punctele A₁A₇ , fara A₂ , A₃ ,A₄ ,A₅ ,A₆ 3 plane
punctele A₁A₈ fara A₂ , A₃ ,A₄ ,A₅ , A₆ , A₇ 2 plane
punctele A₁A₉A₁₀ 1 plan
⇒ 36 plane
fara A₁ , celelalte 9 puncte formeaza 28 plane
fara A₁ , A₂ celelalte 8 puncte formeaza 21 plane
fara A₁ ,A₂ , A₃ 7 15 plane
fara A₁ ,A₂,A₃ ,A₄ 6 10 plane
fara A₁ ,A₂ ,A₃,A₄ ,A₅ 5 puncte 6 plane
fara A₁ ,A₂ , A₃ ,A₄ ,A₅,A₆ 4 puncte 3 plane
fara A₁ , A₂ , A₃ ,A₄ ,A₅ ,A₆ ,A₇ 3 puncte 1 plan
total = 120 plane
[tex]Se~stie~ca~oricare~trei~puncte~sunt~coplanare. \\ \\ Pentru~ca~numarul~de~plane~determinate~de~cele~10~puncte~sa~fie~ \\ \\ maxim,~punctele~trebuie~sa~fie~PATRU~CATE~PATRU \\ \\ NECOPLANARE.\\ \\ In~aceste~conditii~raspunsul~cerut~de~problema~este~C^3_{10}= \frac{10!}{3! \cdot 7!}=120. \\ \\ C^3_{10}=combinatii~de~cate~10~luate~cate~3. \\ \\ n!=1 \cdot 2 \cdot ... \cdot n,~iar~0!=1. [/tex]
[tex]Stiu~ca~aceste~"combinatii~de~cate~n,~luate~cate~k"~depaseste~ \\ \\ nivelul~(chiar~si~pentru~mine),~asa~ca~o~sa~prezint~o~metoda~de \\ \\ a~calcula~"combinatiile~de~cate~10~luate~cate~3". \\ \\ O~astfel~de~combinare~este~de~tipul~(A_i,A_j,A_k),~unde~ \\ \\ i,j,k \in \{1,2,...,10\},~punctele~considerate~fiind~A_1,A_2,...,A_{10}. \\ \\ (Evident~i \neq j ,~ j \neq k ~si~ k \neq i). [/tex]
[tex]i~poate~lua~10~valori \\ \\ k~poate~lua~9~valori~(k \neq i) \\ \\ j~poate~lua~8~valori~( j \neq k~si~ j \neq i)\\ \\ Deci~exista~10 \cdot 9 \cdot 8=720~astfel~de~perechi,~DAR~astfel~fiecare \\ \\ triplet~a~fost~numarat~de~6~ori \Rightarrow exista~720:6=120~triplete~ \\ \\ distincte,~deci~si~120~de~plane~distincte. [/tex]
[tex]Stiu~ca~aceste~"combinatii~de~cate~n,~luate~cate~k"~depaseste~ \\ \\ nivelul~(chiar~si~pentru~mine),~asa~ca~o~sa~prezint~o~metoda~de \\ \\ a~calcula~"combinatiile~de~cate~10~luate~cate~3". \\ \\ O~astfel~de~combinare~este~de~tipul~(A_i,A_j,A_k),~unde~ \\ \\ i,j,k \in \{1,2,...,10\},~punctele~considerate~fiind~A_1,A_2,...,A_{10}. \\ \\ (Evident~i \neq j ,~ j \neq k ~si~ k \neq i). [/tex]
[tex]i~poate~lua~10~valori \\ \\ k~poate~lua~9~valori~(k \neq i) \\ \\ j~poate~lua~8~valori~( j \neq k~si~ j \neq i)\\ \\ Deci~exista~10 \cdot 9 \cdot 8=720~astfel~de~perechi,~DAR~astfel~fiecare \\ \\ triplet~a~fost~numarat~de~6~ori \Rightarrow exista~720:6=120~triplete~ \\ \\ distincte,~deci~si~120~de~plane~distincte. [/tex]