Răspuns :
[tex]A(x)=\left(\begin{array}{ccc}2^{x} & 0 & 0 \\ 0 & 1 & 2 x \\ 0 & 0 & 1\end{array}\right)[/tex]
a)
Calculam det(A(1)), adaugam primele doua linii ale determinantului si obtinem:
[tex]det(A(1))=\left|\begin{array}{ccc}2 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right|[/tex]
2 0 0
0 1 2
det(A(1))=(2+0+0)-(0+0+0)=2
b)
[tex]A(x)\cdot A(y)=\left(\begin{array}{ccc}2^{x} & 0 & 0 \\ 0 & 1 & 2 x \\ 0 & 0 & 1\end{array}\right)\cdot \left(\begin{array}{ccc}2^{y} & 0 & 0 \\ 0 & 1 & 2 y \\ 0 & 0 & 1\end{array}\right)=\left(\begin{array}{ccc}2^{x+y} & 0 & 0 \\ 0 & 1 & 2 x+2y \\ 0 & 0 & 1\end{array}\right)\\\\A(x)\cdot A(y)=\left(\begin{array}{ccc}2^{x+y} & 0 & 0 \\ 0 & 1 & 2 (x+y) \\ 0 & 0 & 1\end{array}\right)=A(x+y)[/tex]
c)
Ne folosim de punctul b
A(1)A(2)A(3)=A(1+2+3)=A(6)
[tex]B=\left(\begin{array}{ccc}2^{6} & 0 & 0 \\ 0 & 1 & 12 \\ 0 & 0 & 1\end{array}\right)-\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)=\left(\begin{array}{ccc}63& 0 & 0 \\ 0 & 0& 12 \\ 0 & 0 & 0\end{array}\right)[/tex]
detB=0 (ultima linie este 0 0 0 ) ⇒rangB≤2
Dar avem un determinant minor
[tex]\left|\begin{array}{ccc}63&0\\0&12\\\end{array}\right|=756\neq 0[/tex]
Deci rangB=2
Un alt exercitiu cu matrice gasesti aici: https://brainly.ro/tema/9919124
#BAC2022
#SPJ4