Răspuns :
[tex]A(x, y)=\left(\begin{array}{ll}1 & 1 \\ x & y\end{array}\right)[/tex]
1)
Calculam det(A(0,0)), inlocuim pe x cu 0 si y cu 0 si facem diferenta dintre produsul diagonalelor
det(A(0,0))=0-0=0
2)
[tex]A(0,0)\cdot A(1,1)=\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)\cdot \left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)=\left(\begin{array}{ll}2 & 2 \\ 0 & 0\end{array}\right)[/tex]
3)
det(A(x,y))=y-x
det(A(y,x))=x-y
y-x+x-y=0
4)
[tex]A(x, y)\cdot A(x,y)=\left(\begin{array}{ll}1 & 1 \\ x & y\end{array}\right)\cdot \left(\begin{array}{ll}1 & 1 \\ x & y\end{array}\right)=\left(\begin{array}{ll}1+x & 1+y \\ x+xy & x+y^2\end{array}\right)[/tex]
[tex]\left(\begin{array}{ll}2 & 2 \\2 x & 2y\end{array}\right)=\left(\begin{array}{ll}1+x & 1+y \\ x+xy & x+y^2\end{array}\right)[/tex]
1+x=2
x=1
1+y=2
y=1
5)
[tex]A(1,1)+A(2,2)+...+A(n,n)=\left(\begin{array}{ll}n& n \\ \frac{n(n+1)}{2} &\frac{n(n+1)}{2} \end{array}\right)\\\\\left(\begin{array}{ll}n& n \\ \frac{n(n+1)}{2} &\frac{n(n+1)}{2} \end{array}\right)=\left(\begin{array}{ll}n& n \\ 4n &4n \end{array}\right)[/tex]
[tex]\frac{n(n+1)}{2} =4n\\\\n^2+n-8n=0\\\\n^2-7n=0\\\\n(n-7)=0\\\\n=0\ si\ n=7[/tex]
Cum n este natural nenul, n=7
6)
1+1+m+n=102
m+n=100
Fie m=x
n=100-x
x={0,1,2,...,100}
Deci avem 101 perechi de numere
Un alt exercitiu cu matrice gasesti aici: https://brainly.ro/tema/9919033
#BAC2022
#SPJ4