Răspuns :
[tex]A=\left(\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right)[/tex]
[tex]B=\left(\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right)$[/tex]
a)
Calculam detA, facem diferenta dintre produsul diagonalelor
detA=0-(-1)=1
b)
[tex]B\cdot B+A=\left(\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right)\cdot \left(\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right)+\left(\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right)=\left(\begin{array}{cc}-1 & -1 \\ 1 & 0\end{array}\right)+\left(\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right)\\\\B\cdot B+A=\left(\begin{array}{cc}0 & 0 \\ 0& 0\end{array}\right)=O_2[/tex]
c)
[tex]A\cdot B=\left(\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right)\cdot \left(\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ 0& 1\end{array}\right)[/tex]
[tex]B\cdot A= \left(\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right)\cdot \left(\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ 0& 1\end{array}\right)[/tex]
AB-BA=O₂
[tex]A+B=\left(\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right)+\left(\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ 0& 1\end{array}\right)[/tex]
[tex]\left(\begin{array}{cc}1 & 0 \\ 0& 1\end{array}\right)=\left(\begin{array}{cc}log_2x& 0 \\ 0& log_3y\end{array}\right)[/tex]
[tex]log_2x=1\\\\x=2\\\\log_3y=1\\\\y=3[/tex]
Un alt exercitiu cu matrice gasesti aici: https://brainly.ro/tema/9853119
#BAC2022
#SPJ4