Răspuns :
Răspuns:
[tex]a )\frac{x}{1.2} = \frac{( {2.5 - 1 \frac{2}{3} })^{2} }{ \frac{5}{24} } \\ \frac{x}{1.2} = \frac{( \frac{25}{10} - \frac{1 \times 3 + 2}{3}) ^{2} }{ \frac{5}{24} } \\ \frac{x}{1.2} = \frac{ (\frac{ {25} }{10} - \frac{5}{3} ) ^{2} }{ \frac{5}{24} } \\ \frac{x}{1.2} = \frac{( \frac{25 \times 3}{30} - \frac{5 \times 10}{30}) ^{2} }{ \frac{5}{24} } \\ \frac{x}{1.2} = \frac{ (\frac{75}{30} - \frac{50}{30} ) ^{2} }{ \frac{5}{24} } \\ \frac{x}{1.2} = \frac{ (\frac{ {25} }{30}) ^{2} }{ \frac{5}{24} } \\ \frac{x}{1.2} = \frac{ \frac{625}{900} }{ \frac{5}{24} } \\ \frac{x}{1.2} = \frac{625}{900} \div \frac{5}{24} \\ \frac{x}{1.2} = \frac{625}{900} \times \frac{24}{5} \\ \frac{x}{1.2} = \frac{125}{150} \times \frac{4}{1} \\ \frac{x}{1.2} = \frac{600}{150} \\ \frac{x}{1.2} = 4 \\ x = 1.2 \times 4 = 4.8[/tex]
[tex]b) \frac{8 \frac{8}{15} \times ( \frac{1}{5} + x \times (1 \frac{1}{3} - 1 \frac{1}{5} )) \times 1 \frac{2}{3} }{2.1(3)} = \frac{ {16}^{8} }{ {8}^{10} } \\ \frac{ \frac{8 \times 15 + 8}{15} \times ( \frac{1}{5} + x \times( \frac{1 \times 3 + 1}{3} - \frac{1 \times 5 + 1}{5} )) \times \frac{1 \times 3 + 2}{3} } {2.1(3)} = \frac{ {16}^{8} }{ {8}^{10} } \\ \frac{ \frac{128}{15} \times ( \frac{1}{5} + x \times ( \frac{4}{3} - \frac{6}{5} )) \times \frac{5}{3} }{2.1(3)} = \frac{ {16}^{8} }{ {8}^{10} } \\ \frac{ { \frac{128}{15} \times ( \frac{1}{5} + x \times ( \frac{4 \times 5}{15} - \frac{6 \times 3}{15}) \times \frac{5}{3} } }{2.1(3)} = \frac{ {16}^{8} }{ {8}^{10} } \\ \frac{ \frac{128}{15} \times ( \frac{1}{5} + x \times \frac{2}{15} \times \frac{5}{3} )}{2.1(3)} = \frac{ {16}^{8} }{ {8}^{10} } \\ \frac{ \frac{128}{15} \times ( \frac{1}{5} + \frac{10x}{45} ) }{2.1(3)} = \frac{ {16}^{8} }{ {8}^{10} } \\ \frac{ \frac{128}{15} \times ( \frac{9}{45} + \frac{10x}{45} ) }{2.1(3)} = \frac{ {16}^{8} }{ {8}^{10} } \\ \frac{ \frac{128}{15} \times \frac{9 + 10x}{45} }{2.1(3)} = \frac{ {16}^{8} }{ {8}^{10} } \\ [/tex]