👤
Popit02
a fost răspuns

VA ROOOOOOG. DAAAAAAU COOOROOOAAAAAANAAAA PROOOMIIIIITTTT. VAAAAAA IMPLOOOOOOR. DAAAAU COOOROOAAANAAAAA PROOOMIIIITTT. VA IMPLOOOOR. VAAAAA ROOOOOOG MUUUUULT AMM NEVOOOIEEE URGEEEENT​

VA ROOOOOOG DAAAAAAU COOOROOOAAAAAANAAAA PROOOMIIIIITTTT VAAAAAA IMPLOOOOOOR DAAAAU COOOROOAAANAAAAA PROOOMIIIITTT VA IMPLOOOOR VAAAAA ROOOOOOG MUUUUULT AMM NEV class=

Răspuns :

Răspuns:

Explicație pas cu pas:

Din formula [tex]1+x+x^2+x^3+...+x^n=\frac{x^{n+1}-1}{x-1}[/tex]

rezulta ca [tex]2^0+2^1+2^2+...+2^{10}=2^{11}-1[/tex]

[tex]\sqrt{2^0+2^1+...+2^{2006}} = \sqrt{2^{2007}}[/tex] dar [tex]2^{2007}[/tex] nu e patrat perfect

deci radicalul de deasupra este irational (adica apartine R - Q)

Demonstratie formula:

[tex]S=1+x+x^2+...+x^n\\xS=x+x^2+x^3+...+x^{n+1}\\xS-S=S(x-1)=x+x^2+x^3+...+x^{n+1}-1-x-x^2-x^3-...-x^n\\S(x-1)=x^{n+1}-1\\S=\frac{x^{n+1}-1}{x-1} \\Deci: 1+x+x^2+...+x^n=\frac{x^{n+1}-1}{x-1}[/tex]