Răspuns :
Explicație pas cu pas:
[tex]\displaystyle\bf\\ {3}^{3} + {3}^{20} \div {3}^{18} \times 3 + 3 \times {3}^{8} \div {3}^{6} + {3}^{10} \div (8 \times {3}^{5} + {3}^{5}) - 4 \times {3}^{3} \\ \\ {3}^{3} +{3}^{20 - 18}\times 3 + {3}^{1 + 8}\div {3}^{6} + {3}^{10} \div ({3}^{5} \times (8 + 1)) - 4 \times{3}^{3} \\ \\ {3}^{3} +{3}^{2 + 1}+ {3}^{9 - 6} + {3}^{10} \div {3}^{5 + 2} - 4 \times{3}^{3} \\ \\ {3}^{3} +{3}^{3}+ {3}^{3} + {3}^{10 - 7} - 4 \times {3}^{3} \\ \\ 3 \times {3}^{3} +{3}^{3}- 4 \times{3}^{3} \\ \\ 81 + 27 - 4\times 27 \\ \\ 108 - 108 \\ \\ \boxed{0} [/tex]