Răspuns :
Formula generală pentru o progresie aritmetică e:
[tex]$S = a_{1} + a_{2} + ... + a_{n} = \frac{n}{2}(a_{1}+a_{n})$[/tex]
[tex]a_{n} = a_{1} + r(n-1) \implies a_{3} = 3 + 2r = 7 \implies r = 2[/tex]
[tex]a_{10} = 3 + 9 \cdot 2 = 3 + 18 = 21[/tex]
[tex]$S = a_{1} + a_{2} + ... + a_{10} = \frac{10}{2}(3 + 21) = \frac{10}{2}(24) = 10 \cdot 12 = \boxed{120}$[/tex]
a₃=a₁+2r
7=3+2r
2r=4
r=2
a₁₉=a₁+9r
a₁₀=3+9×2
a₁₀=21
S₁₀=(a₁+a₁₀)/2×10
S₁₀=(3+21)/2×10
S₁₀=24/2×10
S₁₀=12×10
S₁₀=120