Răspuns:
Explicație pas cu pas:
a) AB/12=BC/16=CA/17=k, coeficient de proportionalitate.
Deci AB=12k, BC=16k, CA=17k
Atunci 12k+16k+17k=360°, ⇒45k=360°, ⇒k=360:45=8.
Deci m(arc AB)=12·8=96°; m(arc BC)=16·8=128°; m(arc CA)=17·8=136°;
Atunci m(∡AOB)=m(arc AB)=96°; m(∡BOC)=m(arc BC)=128°;
m(∡COA)=m(arc CA)=136°;
b) AB/17=BC/20=CA/23=k, coeficient de proportionalitate.
Deci AB=17k, BC=20k, CA=23k
Atunci 17k+20k+23k=360°, ⇒60k=360°, ⇒k=360:60=6.
Deci m(arc AB)=17·6=102°; m(arc BC)=20·6=120°; m(arc CA)=23·6=138°;
Atunci m(∡AOB)=m(arc AB)=102°; m(∡BOC)=m(arc BC)=120°;
m(∡COA)=m(arc CA)=138°;