Răspuns :
[tex] {4}^{14} - (6 \times {4}^{13} - 2 \times {2}^{26}) = \\ \\ { {(2}^{2}) }^{14} - (6 \times { {(2}^{2}) }^{13} - 2 \times - {2}^{1} \times {2}^{26}) = \\ \\ {2}^{28} - (6 \times {2}^{26} - {2}^{1 + 26}) = \\ \\ {2}^{28} - (6 \times {2}^{26} - {2}^{27}) = \\ \\ {2}^{28} - (6 - 2) \times {2}^{26} = \\ \\ {2}^{28} - 4 \times {2}^{26} = \\ \\ ( {2}^{2} - 4) \times {2}^{26} = \\ \\ (4 - 4) \times {2}^{26} = \\ \\ 0 \times {2}^{26} = \\ \\ 0 [/tex]
Răspuns
Explicație pas cu pas: