👤
Paty1210
a fost răspuns

Rezolvati in multimea numerelor reale ecuatia √x^2 - 4x + 5= 1

Răspuns :

   
[tex]\displaystyle\\ \sqrt{x^2 - 4x + 5} =1~~~~~\Big| ~\text{ (Ridicam la puterea a 2-a)} \\\\ x^2 - 4x + 5 = 1^2\\\\ x^2 - 4x + 5 = 1\\\ x^2 - 4x + 5-1 = 0\\\ x^2 - 4x + 4 = 0\\\ (x-2)^2 = 0\\\\ \bf Solutia:~~~\boxed{\bf x_1 + x_2 = 2}\\\\ Verificare~ in~ ecuatia~ initiala:\\\\ \sqrt{x^2 - 4x + 5}=\sqrt{2^2 - 4\cdot 2 + 5} = \sqrt{4 - 8 + 5} =\sqrt{1} =1~~OK [/tex]