👤
a fost răspuns

ajutor limita cos....(inteleg ca se foloseste teorema de medie as vrea sa stiu cum gasesc valoarea medie?)

Ajutor Limita Cosinteleg Ca Se Foloseste Teorema De Medie As Vrea Sa Stiu Cum Gasesc Valoarea Medie class=

Răspuns :

Rayzen
[tex]-1\leq cost\leq1 \Big|+2\Rightarrow 1 \leq cost+2\leq 3\Big|^{-1} \Rightarrow \dfrac{1}{1} \geq \dfrac{1}{cost+2} \geq \dfrac{1}{3} \Rightarrow \\ \\ \Rightarrow \dfrac{1}{3} \leq \dfrac{1}{cost+2} \leq 1 \Big|($integram$) \Rightarrow \int\limits^x_0 {\dfrac{1}{3}} \, dt \leq \int\limits^x_0 {\dfrac{1}{cost+2}} \, dt \leq \int\limits^x_0 {1} \, dt \Rightarrow[/tex]

[tex] \Rightarrow \dfrac{t}{3}\Big|_0^x \leq \int\limits^x_0 {\dfrac{1}{cost+2}} \, dt \leq t\big|_0^x \Rightarrow \dfrac{x}{3} -0 \leq \int\limits^x_0 {\dfrac{1}{cost+2}} \, dt \leq x-0 \Rightarrow \\ \\ \Rightarrow \dfrac{x}{3} \leq \int\limits^x_0 {\dfrac{dt}{cost+2}}\leq x [/tex]

[tex]\Rightarrow \underset{x\rightarrow \infty}{lim} $ $ \dfrac{1}{x}\cdot \int\limits^x_0 {\dfrac{dt}{cost+2}} \, = \underset{x\rightarrow \infty}{lim} $ $ \dfrac{1}{x}\cdot x = \underset{x\rightarrow \infty}{lim} $ $ 1 = 1[/tex]