👤

Buna ziua , poate cineva sa-mi explice intervalele de monotonie , adica cum scriu daca este descrescatoare sau crescatoare , cum desenez in functie de , va rog din suflet , este singurul subpunct pe care nu-l inteleg , de exemplu , acesta : " f(x)= -x la 3 +3x +2 ,

demonstrati ca f(x) estemai mic sau egal decat 4 , pentru orice x apartine |-1, plus infinit ) , si daca are vreo importanta tipul de paranteza , de ex aici incepe cu patrata si se termina cu rotunda , de ce ? va rog frumos ! nu am mai multe puncte ca as da 1000


Răspuns :


Pasul 1: Derivezi functia
Pasul 2: Egalezi functia cu 0
Pasul 3: Creezi tabelul de variatie
Pasul 4: Din tabel vei observa unde este crescatoare si descrescatoare

Concret:
(-X^3+3x+3)'=-3x^2+3
f'(x)=0 => -3x^2+3=0
delta=36 / x1=-1 / x2=1

Afli f(x) in punctele lui x pe care le-ai aflat la ec de gr 2
f(-1)=-2
f(1)=4
In continuare, faci tabelul:

X | -inf -1 1 +inf
___|____________________
f'(x) | - - - - - 0 + + + 0 - - - - - -
___|____________________
f(x) | descr -2 cresc 4 descresc

Minusurile si plusurile de la f'(x) reprez semnul lui a, de la functia de gradul 2. Exista doua situatii. Poti scrie intre radacini semn contrar lui a, iar in rest semnul lui a, sau poti lua valori mai mici decat -1 pentru f'(x), respectiv valori cuprinse intre (-1,1) si mai mar8 decat 1 pentru a observa semnul care trebuie pus ( <0 inseamna ---, respectiv >0 inseamna +++).
In functie de ce ai, si anume --- sau +++, vei scrie ca functia e descrescatoare sau crescatoare.
Pentru a scrie mai apoi intervalele trebuie sa ai o viziune a tabelului, si eu zic ca se vede clar ca 4 este cea mai mare valoare din functie, astfel ca oricare ar fi x, va fi mai moc sau egal cu 4.