Răspuns :
Formula termenului liber este
T(k+1)=C12^kx^(12-k)*(1/x)^K unde C12^k= combinari de 12 luate cate k
Determini pe k
x^(12-k)*(1/x)^k =x^(12-2k). Pui conditia ca 12-2k=0 Pt ca x^0=1
12-2k=0 k=6
T(6+1)=C12^6
T7=12!/6!*(12-6)!=7*8*9*10*11*12/6!
6!=1*2*3*4*5*6 =720
Calculwele ti le faci singur
T(k+1)=C12^kx^(12-k)*(1/x)^K unde C12^k= combinari de 12 luate cate k
Determini pe k
x^(12-k)*(1/x)^k =x^(12-2k). Pui conditia ca 12-2k=0 Pt ca x^0=1
12-2k=0 k=6
T(6+1)=C12^6
T7=12!/6!*(12-6)!=7*8*9*10*11*12/6!
6!=1*2*3*4*5*6 =720
Calculwele ti le faci singur
[tex] T_{k+1}= C^{k} _{12}*( x^2)^{12-k} *( \frac{1}{x})^k \\ x^{24-2k-k} =x^0 \\ 24-3k=0 \\ 24=3k \\ k=8 \\ T_{8+1}= C^{8} _{12}* x^{24-16}* x^{-8} = \frac{12!}{8!*4!}= \frac{9*10*11*12}{24}=495 [/tex]