Răspuns :
Fie E piciorul perpendicularei din C pe AB. In ΔCEB, dreptunghic in E, cu m(B) = 60 si EB = (AB - CD)/2 = (48 - 12)/2 = 36/2 = 18 cm avem:
cos (B) = EB/BC =1/2
18/BC = 1/2
BC = 2 × 18 = 36 cm
sin (B) = CE/BC = √3/2
CE/36 = √3/2
CE = 36√3/2 = 18√3 cm
P = AB + 2 × BC + DC = 48 + 72 + 12 = 132 cm
A = (AB + CD) × CE /2 = 60 × 18√3 / 2= 540√3 cm²
cos (B) = EB/BC =1/2
18/BC = 1/2
BC = 2 × 18 = 36 cm
sin (B) = CE/BC = √3/2
CE/36 = √3/2
CE = 36√3/2 = 18√3 cm
P = AB + 2 × BC + DC = 48 + 72 + 12 = 132 cm
A = (AB + CD) × CE /2 = 60 × 18√3 / 2= 540√3 cm²
Perimetrul= AB+BC+CD+DA
Aria = ( AB+CD)x CN totul supra 2
CN il afli in triunghiul CNB cu teorema lui Pitagora sau cu sin/ cos/tg/ctg
![Vezi imaginea Darkangel01717](https://ro-static.z-dn.net/files/d56/96f51ab801fb8662817b4c0d0612b2a8.jpg)