Răspuns :
Folosesti formulele:
[tex]n!=1\cdot2\cdot3\cdot...\cdot n[/tex]
[tex]A_n^k=n\cdot(n-1)\cdot(n-2)\cdot...\cdot(n-k+1)[/tex] aici este bine sa retii ca sunt exact k factori.
[tex]C_n^k=\dfrac{A_n^k}{P_k}[/tex]
[tex]P_n=n![/tex]
[tex]n!=1\cdot2\cdot3\cdot...\cdot n[/tex]
[tex]A_n^k=n\cdot(n-1)\cdot(n-2)\cdot...\cdot(n-k+1)[/tex] aici este bine sa retii ca sunt exact k factori.
[tex]C_n^k=\dfrac{A_n^k}{P_k}[/tex]
[tex]P_n=n![/tex]
[tex] a) \, \, \frac{A_5^4}{P_4} = \frac{5*4*3*2}{1*2*3*4}=5 \\ \\ b)\, \, {A_7^5}*{C_5^3}= (7*6*5*4*3)*\frac{5*4*3}{1*2*3}= \\ = (7*6*5*4*3) * 10 = 2520*10 =25200 \\ \\ c)\, \, \frac{C_7^4}{P_6}= \frac{7*6*5*4}{(1*2*3*4)*(1*2*3*4*5*6)} = \frac{5}{1*2*3*4*5*6}= \frac{1}{1*2*3*4*6} [/tex]