Răspuns :
l) = ( x +1 ) / ( x +1 ) = 1
m) = ( y + 1 + 3 + y +2 ) / ( y +3) =
= ( 2y + 6) / ( y +3) = 2 · ( y +3 ) / ( y +3) =
= 2 / 1 = 2
n) = ( 2 +4+6+.. + 2n ) / ( n +1 ) =
= 2 · ( 1 +2 +3 + ... + n ) / ( n +1 ) =
= 2 · ( 1 + n ) · n / 2 / ( n +1 ) =
= ( 1 +n ) · n / ( n +1 ) =
= n / 1 = n
m) = ( y + 1 + 3 + y +2 ) / ( y +3) =
= ( 2y + 6) / ( y +3) = 2 · ( y +3 ) / ( y +3) =
= 2 / 1 = 2
n) = ( 2 +4+6+.. + 2n ) / ( n +1 ) =
= 2 · ( 1 +2 +3 + ... + n ) / ( n +1 ) =
= 2 · ( 1 + n ) · n / 2 / ( n +1 ) =
= ( 1 +n ) · n / ( n +1 ) =
= n / 1 = n
[tex]l). \frac{x}{x+1} + \frac{1}{x+1} = \frac{1+x}{1+x} =1 \\ \\ m). \frac{y+1}{y+3} + \frac{3}{y+3} + \frac{y+2}{y+3} = \frac{1+y+2+y+3}{y+3} = \frac{2y+6}{y+3} = \frac{2(y+3)}{y+3} =2 \\ \\ n). \frac{2}{n+1} + \frac{4}{n+1} + \frac{6}{n+1} +...+ \frac{2n}{n+1} = \frac{2(1+2+3+...+n)}{n+1} = \frac{(n+1)*n}{n+1} =n[/tex]