Răspuns :
Răspuns:
1. S-o convingă ; să rămână ; să (se) odihnească ; să stea; să (se) întindă
2.? scuze, nu știu ?
3. Pentru a îmbunătății textul, oferindu-i o scurtare, legând verbul de pronume ( s- = să ; - o= ea/ pe ea)
SPER CĂ TE-AM AJUTAT! ❤️
Răspuns:
\begin{gathered}\it b)\\ \\ \ 2)\ \ P(x)=x^2-10x+25=(x-5)^2\\ \\ P(x)=0 \Rightarrow (x-5)^2=0 \Rightarrow x_1=x_2=5\\ \\ \\ 1)\ \ P(x)= -3x^2-10x+25=-4x^2+x^2-10x+25=x^2=\\ \\ =(x-5)^2-(2x)^2=(x-5-2x)(x-5+2x)=-(x+5)(3x-5)\\ \\ P(x)=0 \Rightarrow -(x+5)(3x-5)=0 \Rightarrow x_1=-5,\ \ x_2=\dfrac{5}{3}\end{gathered}
b)
2) P(x)=x
2
−10x+25=(x−5)
2
P(x)=0⇒(x−5)
2
=0⇒x
1
=x
2
=5
1) P(x)=−3x
2
−10x+25=−4x
2
+x
2
−10x+25=x
2
=
=(x−5)
2
−(2x)
2
=(x−5−2x)(x−5+2x)=−(x+5)(3x−5)
P(x)=0⇒−(x+5)(3x−5)=0⇒x
1
=−5, x
2
=
3
5
\it 3)\ \ P(x)=2x^2-10x+25=0, \ \ \Delta =-100 < 0 \Rightarrow x_{1,2}\not\in\mathbb{R}3) P(x)=2x
2
−10x+25=0, Δ=−100<0⇒x
1,2
∈R
\begin{gathered}\it c)\\ \\ P(x)=3x^2+bx+1=0\\ \\ \Delta = b^2-12=b^2-(2\sqrt3)^2\\ \\ \\ 3) \ \Delta < 0 \Rightarrow b^2 < (2\sqrt3)^2 \Rightarrow \sqrt{b^2} < \sqrt{(2\sqrt3)^2} \Rightarrow |b| < 2\sqrt3 \Rightarrow\\ \\ \Rightarrow b\in(-2\sqrt3,\ 2\sqrt3);\ \ b=0 \Rightarrow P(x)=3x^2+1=0 \Rightarrow x_{1,2}\not\in\mathbb{R}\\ \\ 2)\ \ \Delta=0 \Rightarrow b^2=(2\sqrt3)^2 \Rightarrow b=\pm2\sqrt3\\ \\ 1) \ \ \Delta > 0 \Rightarrow b\in\mathbb{R}\setminus [-2\sqrt3,\ \ 2\sqrt3]\end{gathered}
c)
P(x)=3x
2
+bx+1=0
Δ=b
2
−12=b
2
−(2
3
)
2
3) Δ<0⇒b
2
<(2
3
)
2
⇒
b
2
<
(2
3
)
2
⇒∣b∣<2
3
⇒
⇒b∈(−2
3
, 2
3
); b=0⇒P(x)=3x
2
+1=0⇒x
1,2
∈R
2) Δ=0⇒b
2
=(2
3
)
2
⇒b=±2
3
1) Δ>0⇒b∈R∖[−2
3
, 2
3
]
\begin{gathered}\it b=4 \Rightarrow P(x)=3x^2+4x+1=3x^2+3x+x+1=3x(x+1)+(x+1)=\\ \\ =(x+1)(3x+1);\ \ P(x)=0 \Rightarrow (x+1)(3x+1)=0 \Rightarrow x_1=-1,\ \ x_2=-\dfrac{1}{3}\end{gathered}
b=4⇒P(x)=3x
2
+4x+1=3x
2
+3x+x+1=3x(x+1)+(x+1)=
=(x+1)(3x+1); P(x)=0⇒(x+1)(3x+1)=0⇒x
1
=−1, x
2
=−
3
1