C⁰ =1 ; C¹ = n C²= n( n -1) /2
n n n
calculam C° × C¹ = 1×n = 1+n+1 = n +2
[ C⁰× C¹ ]× C² = ( n +2 ) ×n( n -1 ) /2
1× n = 1 + n +1 = n +2
( n +2 ) × [ n ( n -1 ) /2 = ( n +2 ) + n ( n -1 ) /2 + 1 = n +3 + n ( n -1 ) /2
n +3 + n ( n -1 ) /2 = n +6
2n + 6 + n ( n -1 ) =2 n +12
n ( n -1 ) =12 -6
n ( n -1 ) = 6
( n-1 ) · n= 2·3 ⇒ n =3
A = { 3 }
pentru ex. de acest tip , raspunsul conduce la produs de numere consecutive