👤

19 Arătaţi că:
Avem A= 5002 +100a+10b+ 2005 +100b+10a - 7007+110a+110b.
a numărul A=5ab2+2ba5 este divizibil cu 11, oricare ar fi cifrele nenule a şi b;
Observăm că 11 este factor comun, deci A = 11(637+10a+10b): 11.
b numărul B=3xy + x2y + xy4 este divizibil cu 3, oricare ar fi cifrele x şi y, x;
Rezolvare:
c numărul C=xy+yz+zx este divizibil cu 11, oricare ar fi cifrele nenule x, y şi z;
Rezolvare:
d numărul D=abba este divizibil cu 11, oricare ar fi cifrele nenule a şi b.
Rezolvare:
20 Determinați:
a numerele de forma a35, divizibile cu 3;
Rezolvare:
b cele mai mari şase numere de forma 2a6b, divizibile cu 4;
Rezolvare:
c numerele de forma ab45, divizibile cu 9


OFER COROANA!!


19 Arătaţi Că Avem A 5002 100a10b 2005 100b10a 7007110a110b A Numărul A5ab22ba5 Este Divizibil Cu 11 Oricare Ar Fi Cifrele Nenule A Şi B Observăm Că 11 Este Fac class=