Răspuns :
Explicație pas cu pas:
a)
[tex]2x + 0.4 = - 0.26 \\ 2x = - 0.26 - 0.4 \\ 2x = 0.66 \iff x = \frac{0.66}{2} \\ \implies \bf x = 0.33 \iff x = \frac{33}{100} [/tex]
b)
[tex]3x + \frac{1}{2} = - 0.5 \iff 3x + 0.5 = - 0.5 \\ 3x = - 0.5 - 0.5 \iff 3x = - 1 \\ \implies \bf x = - \frac{1}{3} \iff x = - 0.(3)[/tex]
c)
[tex](x - 3) : 0.(6) = \frac{4}{3} \\ (x - 3) : \frac{6}{9} = \frac{4}{3} \iff (x - 3) : \frac{2}{3} = \frac{4}{3} \\ x - 3 = \frac{4}{3} \cdot \frac{2}{3} \iff x = \frac{8}{9} + 3 \\ \implies \bf x = 3 \frac{8}{9} \iff x = \frac{35}{9} [/tex]
d)
[tex]1 \frac{1}{2} \cdot x - 0.5 = {\Big( - \frac{3}{2} \Big)}^{2} \\ \frac{3x}{2} - \frac{1}{2} = \frac{9}{4} \iff \frac{^{2)}(3x - 1)}{2} = \frac{9}{4} \\ 2(3x - 1) = 9 \iff 6x - 2 = 9 \\ 6x = 9 + 2 \iff 6x = 11 \\ \implies \bf x = \frac{11}{6} \iff x = 1 \frac{5}{6} [/tex]