Răspuns :
Răspuns:
ma = √3
Explicație pas cu pas:
[tex]a = \sqrt{(\sqrt{2}- \sqrt{3})^{2} } = I \sqrt{2} - \sqrt{3} I = \sqrt{3} - \sqrt{2}[/tex]
[tex]b = \sqrt{(\sqrt{3} +\sqrt{2})^{2} } = \sqrt{3} + \sqrt{2}[/tex]
[tex]ma = \frac{\sqrt{3}-\sqrt{2} +\sqrt{3} +\sqrt{2} }{2} = \frac{2\sqrt{3} }{2} = \sqrt{3}[/tex]
[tex]\it a=\sqrt{(\sqrt2-\sqrt3)^2}=|\underbrace{\it \sqrt2-\sqrt3}_{ < 0}|=-\sqrt2+\sqrt3\\ \\ \\ b=\sqrt{(\sqrt3+\sqrt2)^2}=\sqrt3+\sqrt2\\ \\ \\ m_a=\dfrac{a+b}{2}=\dfrac{-\sqrt2+\sqrt3+\sqrt3+\sqrt2}{2}=\dfrac{2\sqrt3}{2}=\sqrt3[/tex]