Răspuns:
[tex]x = \frac{7}{4} \\ [/tex]
Explicație pas cu pas:
[tex] \frac{2 {}^{2019} + {2}^{2020} + {2}^{2021} }{x} = \frac{ {32}^{404} }{0,5} \: , x \neq 0\\ [/tex]
[tex] \frac{(1 + 2 + {2}^{2} ) \cdot {2}^{2019} }{x} = \frac{ {2}^{2020} }{ \frac{1}{2} } \\ [/tex]
[tex] \frac{(1 + 2 + 4) \cdot {2}^{2019} }{x} = \frac{ {2}^{2020} }{ {2}^{ - 1} } \\ [/tex]
[tex] \frac{7 \cdot {2}^{2019} }{x} = {2}^{2021} \\ [/tex]
[tex]7 \cdot {2}^{2019} = {2}^{2021} \cdot x[/tex]
[tex] {2}^{2021} \cdot x = 7 \cdot {2}^{2019} [/tex]
[tex]x = \frac{7 \cdot {2}^{2019} }{ {2}^{ 2021} } = \frac{7}{ {2}^{2} } = \boxed{ \frac{7}{4}} \\ [/tex]