Răspuns :
Răspuns:
[tex]a_{1}[/tex]=1 [tex]a_{2}[/tex]=3
Explicație pas cu pas:
[(3+a)x3+3x(3+3:a)]:3-3x3+3:3=2
I. determinăm domeniul de definiție, a≠0
[(3a)*3+3(3+3÷a)]÷3-3*3+3÷3=2
[ 9+3a+3(3+ [tex]\frac{3}{a}[/tex])]*[tex]\frac{1}{3}[/tex]-9+1=2
(9+3a+9+[tex]\frac{9}{a}[/tex])*[tex]\frac{1}{3}[/tex]-9+1=2
(18+3a+[tex]\frac{9}{a}[/tex])*[tex]\frac{1}{3}[/tex]-9+1=2
[tex]\frac{18a+3a^{2} }{a}[/tex]*[tex]\frac{1}{3}[/tex]-9+1=2
[tex]\frac{3(6a+a^{2}+3) }{a}[/tex]*[tex]\frac{1}{3}[/tex]-9+1=2
[tex]\frac{6a+a^{2}+3 }{a}[/tex]-9+1=2
[tex]\frac{6a+a^{2}+3}{a}[/tex]-8-2=0
[tex]\frac{6a+a^{2}+3}{a}[/tex]-10=0
[tex]\frac{6a+a^{2}+3-10a }{a}[/tex]=0
[tex]\frac{-4a+a^{2}+3 }{a}[/tex]=0
-4a+[tex]a^{2}[/tex]+3=0
[tex]a^{2}[/tex]-a-3a+3=0
[tex]a^{2}-a-3a+3=0[/tex]
a(a-1)-3(a-1)=0
(a-1)(a-3)=0
a-1=0 a-3=0
a=1 a=3 a≠0
[tex]a_{1}[/tex]=1 [tex]a_{2}[/tex]=3
Răspuns:
a = 1; a = 3
Explicație pas cu pas:
a ≠ 0
[(3+a)×3 + 3×(3+3:a)]:3 - 3×3 + 3:3 = 2
[9 + 3a + 3×(3+3:a)]:3 - 9 + 1 = 2
[9 + 3a + 3×(3+3:a)]:3 = 10
9 + 3a + 3×(3+3:a) = 10×3
3a + 3×(3+3:a) = 30 - 9
3a + 3×(3+3:a) = 21 |:3
a + 3 + 3:a = 7
a + 3:a = 7 - 3
a + 3:a = 4 |×a
a² + 3 - 4a = 0
a² - 3a - a + 3 = 0
a(a - 3) - (a - 3) = 0
(a - 1)(a - 3) = 0
=>
a - 1 = 0 => a = 1
a - 3 = 0 => a = 3