Răspuns :
Explicație pas cu pas:
[tex]180 \degree - \alpha = n \cdot (90\degree - \alpha ) \\ 180\degree - \alpha = n \cdot 90\degree - n \cdot \alpha \\ n \cdot \alpha - \alpha = n \cdot 90\degree - 180\degree \\ \alpha (n - 1) = 90\degree \cdot (n - 2) \\ \implies \red{\bf \alpha = \frac{90\degree \cdot (n - 2)}{n - 1}} [/tex]
n = 4 =>
[tex]\alpha = \frac{90\degree \cdot (4 - 2)}{4 - 1} = \frac{90\degree \cdot 2}{3} = \frac{180\degree}{3} = 60\degree \\ \implies \alpha = 60\degree[/tex]
n = 5 =>
[tex]\alpha = \frac{90\degree \cdot (5 - 2)}{5 - 1} = \frac{90\degree \cdot 3}{4} = \frac{270\degree}{4} = 67.5\degree \\ \implies \alpha = 67.5\degree[/tex]