Răspuns :
a) BC=BD=24 cm => triunghiul BCD isoscel => <BCD=<BDC
<BCD=<BCA=<ABC=<BDC => triunghiul ABC este asemenea cu triunghiul BCD (din cazul U.U.) => BC/AB=CD/BC <=> 24/36=CD/24 <=> 2/3=CD/24 <=> CD=2×24/3=48/3=16 cm
AD=AC-CD=36-16=20 cm
P tr. ABD = AB+BD+AD=36+24+20=80 cm
b) Fie semiperimetrul tr. BCD = p = (24×2+16)÷2= (48+16)÷2=24+8=32 cm
Calculam Aria tr. BCD folosind formula lui Heron
Fie BC=BD=a
CD=b
[tex]aria \: = \: \sqrt{p(p - a)(p - a)(p - b)} [/tex]
(Calculul ariei il gasesti in poza de mai sus)
A tr. = 128 radical din 2
Fie d (D,BC)=x
A tr. = baza × inaltime/2 = BC × d (D,BC)
[tex]128 \sqrt{2} = \frac{24 \times x}{2} \\ 128 \sqrt{2} = 12x \\ x = \frac{128 \sqrt{2} }{12} = \frac{32 \sqrt{2} }{3} [/tex]