Explicație pas cu pas:
4) RE = RD + DE = 4 + 5 = 9 cm
[tex]\frac{P_{\triangle RDP}}{P_{\triangle REN}} = \frac{RD}{RE} \iff \frac{18}{P_{\triangle REN}} = \frac{4}{9} \\ \implies P_{\triangle REN} = \frac{18 \times 9}{4} = \frac{81}{2} \\ \iff P_{\triangle REN} = 40.5 \: cm[/tex]
5) AB ≡ BC => DE ≡ EF = 5 cm
RF = RD + DE + EF = 4 + 5 + 5 = 14 cm
[tex]\frac{A_{\triangle RDP}}{A_{\triangle RFM}} = \frac{RD}{RF} \iff \frac{24}{A_{\triangle RFM}} = \left(\frac{4}{14}\right)^{2} = \left(\frac{2}{7}\right)^{2} \\\frac{24}{A_{\triangle RFM}} = \frac{4}{49} \implies A_{\triangle RFM} = \frac{24 \times 49}{4} = 6 \times 49 \\ \iff A_{\triangle RFM} = 294 \: cm^{2}[/tex]