Răspuns:
Explicație pas cu pas:
f : R -> R f(x) = x² + 2x - 3
A (3 , 12) ∈ Gf <=> f(3) = 12
f(3) = 3²+2·3-3 = 9+6-3 = 12 =>
A (3 , 12) ∈ Gf
B (-1 ; -3) ∈ Gf <=> f(-1) = -3
f(-1) = (-1)²+2·(-1)-3 = 1-2-3 = -5 ≠ -3 =>
B (-1 ; -3) ∉ Gf
C (-4 ; 5) ∈ Gf <=> f(-4) = 5
f(-4) = (-4)²+2·(-4)-3 = 16-11 = 5 =>
C (-4 ; 5) ∈ Gf
Vx = -b/2a = -2/2 = -1
Vy = V(-1) = (-1)²+2·(-1)-3 = 1-2-3 = -4
V (-1 ; -4) = varful parabolei
∩ Ox <=> f(x) = 0 => x²+2x-3 = 0 <=>
x²+3x-x-3 = 0 <=> x(x+3) - (x+3) = 0 <=>
(x+3)(x-1) = 0 => x₁ = -3 ; x₂ = 1 =>
D (-3 ; 0) ; E (1 ; 0)
∩ Oy <=> x = 0 => f(0) = 0²+2·0-3 = -3 =>
F ( 0 ; -3)