Răspuns :
[tex]M(x)=\left(\begin{array}{cc}1 & x \\ 2 x & x+1\end{array}\right)[/tex]
1)
Calculam det(M(2)), inlocuim pe x cu 2 si facem diferenta dintre produsul diagonalelor
det(M(2))=1×3-2×4=3-8=-5
2)
[tex]M(x)+M(x+2)=\left(\begin{array}{cc}1 & x \\ 2 x & x+1\end{array}\right)+\left(\begin{array}{cc}1 & x+2 \\ 2 x+4 & x+3\end{array}\right)=\left(\begin{array}{cc}2 & 2x+2 \\ 4x+4 & 2x+4\end{array}\right)=\left(\begin{array}{cc}2 & 2(x+1)) \\ 4(x+1) & 2(x+2)\end{array}\right)=2M(x+1)[/tex]
3)
det(M(x))=0
x+1-2x²=0
2x²-x-1=0
Δ=1+8=9
[tex]x_1=\frac{1+3}{4} =1\\\\x_2=\frac{1-3}{4} =-\frac{1}{2}[/tex]
4)
[tex]M(x)\cdot M(y)=\left(\begin{array}{cc}1 & x \\ 2 x & x+1\end{array}\right)\cdot \left(\begin{array}{cc}1 & y \\ 2 y & y+1\end{array}\right)=\left(\begin{array}{cc}1 +2xy&y+xy+x \\ 2x+2xy+2y & 3xy+x+y+1\end{array}\right)[/tex]
[tex]M(y)\cdot M(x)= \left(\begin{array}{cc}1 & y \\ 2 y & y+1\end{array}\right)\cdot \left(\begin{array}{cc}1 & x \\ 2 x & x+1\end{array}\right)=\left(\begin{array}{cc}1 +2xy&y+xy+x \\ 2x+2xy+2y & 3xy+x+y+1\end{array}\right)[/tex]
Observam ca sunt egale
5)
[tex]M(x)\cdot M(-x)=\left(\begin{array}{cc}1 & x \\ 2 x & x+1\end{array}\right)\cdot \left(\begin{array}{cc}1 & -x \\ -2 x & -x+1\end{array}\right)=\left(\begin{array}{cc}1 &0 \\ 0 & 1\end{array}\right)\\\\\left(\begin{array}{cc}1 -2x^2& -x^2 \\ -2x^2 & -2x^2+x^2-1\end{array}\right)=\left(\begin{array}{cc}1 &0 \\ 0 & 1\end{array}\right)\\\\[/tex]
-x²=0
x=0
6)
[tex]nM(x)-xM(n)=\left(\begin{array}{cc}n &nx \\ 2nx & nx+n\end{array}\right)-\left(\begin{array}{cc}x &nx \\ 2nx & nx+x\end{array}\right)=\left(\begin{array}{cc}n-x &0 \\ 0 & n-x\end{array}\right)\\\\\left|\begin{array}{cc}n-x &0 \\ 0 & n-x\end{array}\right|=(n-x)^2\\\\[/tex]
[tex](n-x)^2\leq n^2\\\\n^2-2nx+x^2\leq n^2\\\\x^2-2nx\leq 0\\\\x\in [0,2n]\\\\[/tex]
Stim ca suma elementelor lui x este egala cu 36
0+1+2+...+2n=36
[tex]\frac{2n(2n+1)}{2} =36\\\\2n^2+n=36\\\\2n^2+n-36=0\\\\\Delta=1+288=289\\\\n_1=\frac{-1+17}{4} =4\\\\n_2=\frac{-1-17}{4} =-\frac{-18}{4} < 0\ NU[/tex]
Un alt exercitiu cu matrice gasesti aici: https://brainly.ro/tema/9928502
#BAC2022
#SPJ4