Răspuns :
[tex]A=\left(\begin{array}{cc}1 & 3 \\ 2 & 1\end{array}\right)[/tex]
[tex]B=\left(\begin{array}{cc}-4 & 0 \\ 0 & 4\end{array}\right)[/tex]
[tex]M(x)=\left(\begin{array}{ll}x & 1 \\ 2 & 3\end{array}\right)[/tex]
a)
Facem diferenta dintre produsul diagonalelor si obtinem:
detA=1-6=-5
b)
det(A+M(-1))=detB
detB=-16-0=-16
[tex]det(A+M(-1))=\left|\begin{array}{ll}0 & 4 \\ 4 &4\end{array}\right|=0-16=-16[/tex]
Observam ca sunt egale
c)
[tex]M(x)\cdot A=\left(\begin{array}{ll}x & 1 \\ 2 & 3\end{array}\right)\cdot \left(\begin{array}{ll}1 & 3 \\ 2 & 1\end{array}\right)=\left(\begin{array}{ll}x+2 & 3x+1 \\ 8 & 9\end{array}\right)[/tex]
[tex]A\cdot M(x)= \left(\begin{array}{ll}1 & 3 \\ 2 & 1\end{array}\right)\cdot \left(\begin{array}{ll}x & 1 \\ 2 & 3\end{array}\right)=\left(\begin{array}{ll}x+6 & 10\\ 2x+2 & 5\end{array}\right)[/tex]
[tex]\left(\begin{array}{ll}x+2 & 3x+1\\ 8 & 9\end{array}\right)-\left(\begin{array}{ll}x+6 & 10\\ 2x+2 & 5\end{array}\right)=\left(\begin{array}{ll}-4 & 3x-9\\ -2x+6 & 4\end{array}\right)[/tex]
Egalam cu termenii matricei B si obtinem
3x-9=0
3x=9
x=3
Un alt exercitiu cu matrice gasesti aici: https://brainly.ro/tema/9928396
#BAC2022
#SPJ4