👤
a fost răspuns

Se consideră funcţia [tex]$f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=e^{x} \cos x$[/tex].

5p a) Arătați că [tex]$\int_{0}^{\pi} \frac{f(x)}{e^{x}} d x=0$[/tex]

\begin{tabular}{l|l}
\hline [tex]$5 p$[/tex] & b) Calculați [tex]$\int_{0}^{\frac{\pi}{2}} f(x) d x .$[/tex] \\
[tex]$5 p$[/tex]& c) Arătați că [tex]$\int_{0}^{\frac{\pi}{3}} \frac{f\left(x+\frac{\pi}{2}\right)}{f(x)} d x=-e^{\frac{\pi}{2}} \ln 2 .$[/tex]
\end{tabular}


Răspuns :

[tex]f(x)=e^{x} \cos x[/tex]

a)

Vezi tabelul de integrale din atasament

[tex]\int\limits^{\pi}_0 {cosx} \, dx =sinx|_0^{\pi}=sin\pi-sin0=0[/tex]

b)

Integram prin parti si notam integrala noastra cu I

[tex]f=cosx\ \ \ f'=-sinx\\\\g'=e^x\ \ \ g=e^x\\\\I=e^xcosx|_0^{\frac{\pi}{2} }+\int\limits^{\frac{\pi}{2}} _0 {e^xsinx} \, dx[/tex]

Calculam separat integrala [tex]\int\limits^{\frac{\pi}{2}} _0 {e^xsinx} \, dx[/tex]

[tex]f=sinx\ \ \ f'=cosx\\\\g'=e^x\ \ \ g=e^x\\\\\int\limits^{\frac{\pi}{2}} _0 {e^xsinx} \, dx =e^xsinx|_0^{\frac{\pi}{2}}- \int\limits^{\frac{\pi}{2}} _0e^xcosx=e^xsinx|_0^{\frac{\pi}{2}}-I[/tex]

[tex]I=e^xcosx|_0^{\frac{\pi}{2}}+e^xsinx|_0^{\frac{\pi}{2}}-I\\\\2I=e^xcosx|_0^{\frac{\pi}{2}}+e^xsinx|_0^{\frac{\pi}{2}}\\2I=e^{\frac{\pi}{2}}-1\\\\I=\frac{e^{\frac{\pi}{2}}-1}{2}[/tex]

c)

[tex]\int\limits^{\frac{\pi}{3} }_0{\frac{e^{x+\frac{\pi}{2}}cos(x+\frac{\pi}{2}) }{e^xcosx} } \, dx =\int\limits^{\frac{\pi}{3} }_0\frac{e^x\cdot e^{\frac{\pi}{2}}(-sinx) }{e^xcosx} \ dx=-e^{\frac{\pi}{2}}\cdot \int\limits^{\frac{\pi}{3} }_0 \frac{sinx}{cosx} =e^{\frac{\pi}{2}}\cdot ln(cosx)|_0^{\frac{\pi}{3}} =e^{\frac{\pi}{2}}(ln\frac{1}{2}-ln1)=-e^{\frac{\pi}{2}}ln2[/tex]

Un alt exercitiu cu integrale gasesti aici: https://brainly.ro/tema/9928393

#BAC2022

#SPJ4

Vezi imaginea AndreeaP