Răspuns :
[tex]f(x)=e^{x} \cos x[/tex]
a)
Vezi tabelul de integrale din atasament
[tex]\int\limits^{\pi}_0 {cosx} \, dx =sinx|_0^{\pi}=sin\pi-sin0=0[/tex]
b)
Integram prin parti si notam integrala noastra cu I
[tex]f=cosx\ \ \ f'=-sinx\\\\g'=e^x\ \ \ g=e^x\\\\I=e^xcosx|_0^{\frac{\pi}{2} }+\int\limits^{\frac{\pi}{2}} _0 {e^xsinx} \, dx[/tex]
Calculam separat integrala [tex]\int\limits^{\frac{\pi}{2}} _0 {e^xsinx} \, dx[/tex]
[tex]f=sinx\ \ \ f'=cosx\\\\g'=e^x\ \ \ g=e^x\\\\\int\limits^{\frac{\pi}{2}} _0 {e^xsinx} \, dx =e^xsinx|_0^{\frac{\pi}{2}}- \int\limits^{\frac{\pi}{2}} _0e^xcosx=e^xsinx|_0^{\frac{\pi}{2}}-I[/tex]
[tex]I=e^xcosx|_0^{\frac{\pi}{2}}+e^xsinx|_0^{\frac{\pi}{2}}-I\\\\2I=e^xcosx|_0^{\frac{\pi}{2}}+e^xsinx|_0^{\frac{\pi}{2}}\\2I=e^{\frac{\pi}{2}}-1\\\\I=\frac{e^{\frac{\pi}{2}}-1}{2}[/tex]
c)
[tex]\int\limits^{\frac{\pi}{3} }_0{\frac{e^{x+\frac{\pi}{2}}cos(x+\frac{\pi}{2}) }{e^xcosx} } \, dx =\int\limits^{\frac{\pi}{3} }_0\frac{e^x\cdot e^{\frac{\pi}{2}}(-sinx) }{e^xcosx} \ dx=-e^{\frac{\pi}{2}}\cdot \int\limits^{\frac{\pi}{3} }_0 \frac{sinx}{cosx} =e^{\frac{\pi}{2}}\cdot ln(cosx)|_0^{\frac{\pi}{3}} =e^{\frac{\pi}{2}}(ln\frac{1}{2}-ln1)=-e^{\frac{\pi}{2}}ln2[/tex]
Un alt exercitiu cu integrale gasesti aici: https://brainly.ro/tema/9928393
#BAC2022
#SPJ4