Răspuns:
Explicație pas cu pas:
[tex]( \frac{1}{ \sqrt{8} } + \frac{1}{ \sqrt{32} } - \frac{1}{ \sqrt{2} } ) \div \frac{ \sqrt{2} }{2} \\ [/tex]
[tex] = ( \frac{ {}^{2)} 1}{2 \sqrt{2} } + \frac{1}{4 \sqrt{2} } - \frac{ {}^{4)} 1}{ \sqrt{2} } ) \times \frac{ 2 }{ \sqrt{2} } \\ [/tex]
[tex] = \frac{2 + 1 - 4}{4 \sqrt{2} } \times \frac{2}{ \sqrt{2} } \\ [/tex]
[tex] = - \frac{1}{\not4 \sqrt{2} } \times \frac{\not2}{ \sqrt{2} } \\ [/tex]
[tex] = - \frac{1}{2 \sqrt{2} } \times \frac{1}{ \sqrt{2} } = - \frac{1}{2 \times 2} = \pink{\boxed{ - \frac{1}{4}}} \\ [/tex]