Răspuns :
[tex]z_{1} \circ z_{2}=z_{1}+z_{2}-\frac{1}{2} \bar{z}_{1}-\frac{1}{2} \bar{z}_{2}[/tex]
a)
[tex]\bar{z_1}=1-i\\\\\bar{z_2}=1+i[/tex]
[tex](1+i)*(1-i)=1+i+1-i-\frac{1-i}{2}-\frac{1+i}{2} =2+\frac{i}{2}-\frac{1}{2} -\frac{1}{2}-\frac{i}{2} =2-1=1[/tex]
b)
[tex]z_1=2+ai\\\\z_2=2+bi[/tex]
[tex]\bar{z_1}=2-ai\\\\\bar{z_2}=2-bi[/tex]
[tex]z_{1} \circ z_{2}=2+ai+2+bi-\frac{2-ai}{2}-\frac{2-bi}{2}=4+(a+b)i-\frac{4-(a+b)i}{2} =4+(a+b)i-2+\frac{(a+b)i}{} =2+\frac{3}{2}(a+b)i[/tex]
De aici rezulta ca H este parte stabila a lui C in raport cu legea de compozitie
c)
[tex]Fie\ z_0=a+bi\\\\Fie\ z=x-bi\\\\z_0\circ z=a+bi+x-bi-\frac{a-bi}{2}-\frac{x+bi}{2} =a+x-\frac{a}{2}+\frac{bi}{2}-\frac{x}{2} -\frac{bi}{2}=\frac{a+x}{2}[/tex]
Cum a si x∈R⇒ [tex]z_0\circ z\in R[/tex]
Un alt exercitiu cu legi de compozitie gasesti aici: https://brainly.ro/tema/9919127
#BAC2022
#SPJ4