Răspuns :
[tex]f(x)=x-e^{x}[/tex]
a)
Vezi tabelul de integrale din atasament
[tex]\int\limits^1_0 {x-e^x} \, dx =\frac{x^2}{2}|_0^1-e^x|_0^1=\frac{1}{2}-e+e^0=\frac{3}{2}-e[/tex]
b)
[tex]\int\limits^1_0 {x(x-e^x)} \, dx =\frac{x^3}{3}|_0^1 -\int\limits^1_0 {xe^x} \, dx =\frac{1}{3}-xe^x|_0^1+e^x|_0^1 =\frac{1}{3} -e+e-1=-\frac{2}{3}[/tex]
[tex]\int\limits^1_0 {xe^x} \, dx=[/tex]
[tex]f=x\ \ \ \ \ f'=1\\\\ g'=e^x\ \ \ \ g=e^x\\\\\int\limits^1_0 {xe^x} \, dx=xe^x|_0^1-\int\limits^1_0 {e^x} \, dx=xe^x|_0^1-e^x|_0^1=e-e+1=1[/tex]
c)
[tex]I_n=\int\limits^1_0 {x^ne^x} \, dx[/tex]
Integram prin parti
[tex]f=x^n\ \ \ \ f=nx^{n-1}\\\\g'=e^x\ \ \ \ g=e^x\\\\I_n=x^ne^x|_0^1-\int\limits^1_0 {nx^{n-1}e^x} \, dx=e-nI_{n-1}[/tex]
[tex]I_n+nI_{n-1}=e-nI_{n-1}+nI_{n-1}=e[/tex]
Un alt exercitiu cu integrale gasesti aici: https://brainly.ro/tema/9918948
#BAC2022
#SPJ4