[tex]f(x)=2 x^{2}-5 x+\ln x[/tex]
a)
Vezi tabelul de derivate in atasament
[tex]f'(x)=4x-5+\frac{1}{x}=\frac{4x^2-5x+1}{x} =\frac{(x-1)(4x-1)}{x}[/tex]
b)
[tex]\lim_{x\to+ \infty} \frac{lnx}{2x^2-5x+lnx} =\frac{\infty}{\infty}[/tex]
Aplicam L'Hopital, derivam numarator, derivam numitor
[tex]\lim_{x\to+ \infty} \frac{(lnx)'}{(2x^2-5x+lnx)'} =\frac{\frac{1}{x} }{\frac{(x-1)(4x-1)}{x} } =\frac{1}{4x^2-5x+1} =\frac{1}{\infty} =0[/tex]
c)
Ecuatia tangentei in punctul A(a,f(a))
y-f(a)=f'(a)(x-a)
In cazul nostru a=1
f(1)=2-5+0=-3
f'(1)=0
Ecuatia tangentei:
y+3=0(x-1)
y=-3
Un alt exercitiu cu limite gasesti aici: https://brainly.ro/tema/9918990
#BAC2022
#SPJ4