Răspuns :
[tex]f(x)=\frac{x^{2}+1}{e^{x}}[/tex]
a)
[tex]\int\limits^1_0 {x^2+1} \, dx =\frac{x^3}{3}|_0^1+x|_0^1=\frac{1}{3}+1=\frac{4}{3}[/tex]
Atasez tabelul de integrale
b)
[tex]\int\limits^{1}_{0} {\frac{x^2+1}{e^{-x}} } \, dx =\int\limits^{1}_{0}e^x(x^2+1)\ dx=\int\limits^{1}_{0}e^xx^2\ dx+\int\limits^{1}_{0}e^x\ dx=e-2+e-1=2e-3[/tex]
[tex]\int\limits^{1}_{0}e^xx^2\ dx[/tex]
Luam acesta integrala separat si o integram prin parti
[tex]f=x^2\ \ \ \ f'=2x\\\\g'=e^x\ \ \ g=e^x\\\\\int\limits^{1}_{0}e^xx^2\ dx=x^2e^x|_0^1-\int\limits^1_0 {2xe^x} \, dx =e-2xe^x|_0^1+\int\limits^{1}_{0}2e^x\ dx=e-2e+2e-2=e-2[/tex]
c)
F este o primitiva a functiei f
F'(x)=f(x)
[tex]F(x)=e^{-x}(-x^2+ax+b)\\\\F'(x)=-e^{-x}(-x^2+ax+b)+e^{-x}(-2x+a)\\\\-e^{-x}(-x^2+ax+b)+e^{-x}(-2x+a)=\frac{x^2+1}{e^x} \\\\e^{-x}(x^2-ax-b-2x+a)=\frac{x^2+1}{e^x}\\\\ x^2-ax-b-2x+a=x^2+1\\\\[/tex]
-a-2=0
a=-2
-b+a=1
-b-2=1
b=-3
Un alt exercitiu cu integrale gasesti aici: https://brainly.ro/tema/9918889
#BAC2022
#SPJ4