Răspuns :
a.
Ecuatia de stare a gazului ideal pentru dioxidul de carbon din butelie se scrie:
[tex]p_1V = \nu RT_1\\\nu = \frac{m}{\mu}\\T_1 \approx t_1 + 273\hspace{1mm}(K)\\\implies\\m = \frac{\mu p_1 V}{R(t_1+273)}\\m = \frac{44\times 10^{-3}\times5\times10^5\times50\times10^{-3}}{8,314 \times 250} = \frac{4,4}{8,314} \approx 0,529\hspace{1mm}kg[/tex]
Mai sus am folosit relatia dintre numarul de moli [tex]\nu[/tex] si masa molara [tex]\mu[/tex], precum si relatia dintre temperatura absoluta T si temperatura empirica t. De asemenea, am transformat litri in metri cubi (1 L = 0,001 m^3).
b.
Avem de-a face cu o transformare izocora (volum constant), legea transformarii este:
[tex]V = const \implies \frac{p}{T} = const \implies\\\frac{p_1}{T_1} = \frac{p_2}{T_2}\implies p_2 = \frac{t_2+273}{t_1+273} \times p_1 \implies\\p_2 = \frac{27 + 273}{-23 + 273} \times 5 \times 10^5 = 6 \times 10^5\hspace{1mm}Pa\\\Delta p = p_2 - p_1 = 10^5\hspace{1mm}Pa[/tex]
c.
Folosim acelasi principiu ca la punctul b. Transformarea este izocora si temperatura maxima se afla din relatia:
[tex]\frac{p_1}{T_1} = \frac{p_{max}}{T_{max}} \implies T_{max} = \frac{p_{max}}{p_1}\times T_1 \implies\\T_{max} = \frac{7\times10^5}{5\times10^5} \times 250\\T_{max} = 350\hspace{1mm}K\\t_{max} = T_{max} - 273 = 77\textdegree C[/tex]
d.
Inainte de deschiderea robinetului:
[tex]p_2V=\frac{m}{\mu}RT_2[/tex]
Dupa deschiderea robinetului si micsorarea masei de gaz din butelie:
[tex]p_1V=\frac{m'}{\mu}RT_2[/tex]
Atunci masa de gaz care a iesit din butelie este:
[tex]\Delta m = m - m' = \frac{\mu(p_2-p_1)V}{RT_2} \implies\\\Delta m = \frac{44\times10^{-3}\times10^5\times50\times10^{-3}}{8,314\times300}\\\Delta m \approx 0,088\hspace{1mm}kg[/tex]
_____________________
Reprezentarea grafica a unei transformari izocore: https://brainly.ro/tema/2718412
#BAC2022 #SPJ4