Răspuns :
[tex]A=\left(\begin{array}{ll}2 & 3 \\ 3 & 2\end{array}\right)[/tex]
[tex]B=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)[/tex]
a)
Calculam detA, facem diferenta dintre produsul diagonalelor
detA=4-9=-5
b)
A·M(x)=M(x)·A
M(x)=B+xI₂
[tex]A\cdot M(x)=\left(\begin{array}{ll}2 & 3 \\ 3 & 2\end{array}\right)\cdot \left(\begin{array}{ll}x & 1\\ 1& x\end{array}\right)=\left(\begin{array}{ll}2x+3 &2 +3x\\ 3x+2& 3+2x\end{array}\right)[/tex]
[tex]M(x)\cdot A= \left(\begin{array}{ll}x & 1\\ 1& x\end{array}\right)\cdot \left(\begin{array}{ll}2 & 3 \\ 3 & 2\end{array}\right)=\left(\begin{array}{ll}2x+3 &2 +3x\\ 3x+2& 3+2x\end{array}\right)[/tex]
Se observa ca sunt egale
c)
A·A-3(A+M(x))=I₂
[tex]\left(\begin{array}{ll}2 & 3 \\ 3 & 2\end{array}\right)\cdot \left(\begin{array}{ll}2 & 3 \\ 3 & 2\end{array}\right)-3\left(\begin{array}{ll}2+x & 4 \\ 4 & 2+x\end{array}\right)=\left(\begin{array}{ll}1& 0 \\ 0 & 1\end{array}\right)[/tex]
[tex]\left(\begin{array}{ll}13 & 12\\ 12 & 13\end{array}\right)-\left(\begin{array}{ll}6+3x & 12 \\ 12 & 6+3x\end{array}\right)=\left(\begin{array}{ll}1& 0 \\ 0 & 1\end{array}\right)[/tex]
13-6-3x=1
7-3x=1
6=3x
x=2
Un alt exercitiu cu matrice gasesti aici: https://brainly.ro/tema/9835805
#BAC2022
#SPJ4