Răspuns :
[tex]A=\left(\begin{array}{cc}3 & 13 \\ -1 & -4\end{array}\right)[/tex]
a)
det(A+I₂)=detA
[tex]det(A+I_2)=\left|\begin{array}{cc}4 & 13 \\ -1 & -3\end{array}\right|=-12+13=1\\\\detA=-12+13=1[/tex]
Observam ca sunt egale
b)
[tex]A^2=\left(\begin{array}{cc}3 & 13 \\ -1 & -4\end{array}\right)\cdot \left(\begin{array}{cc}3 & 13 \\ -1 & -4\end{array}\right)=\left(\begin{array}{cc}-4 & -13 \\ 1 & 3\end{array}\right)\\\\A^3=\left(\begin{array}{cc}-4 & -13 \\ 1 & 3\end{array}\right)\cdot \left(\begin{array}{cc}3 & 13 \\ -1 & -4\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)[/tex]
[tex]aI_2=I_2\\\\a=1[/tex]
a=1
c)
[tex]det(A+mI_2)=det(A+nI_2)[/tex]
[tex]\left|\begin{array}{cc}3+m & 13 \\ -1 & -4+m\end{array}\right|=\left|\begin{array}{cc}3+n & 13 \\ -1 & -4+n\end{array}\right|\\\\(m-4)(m+3)+13=(n-4)(n+3)+13\\\\m^2-m+1=n^2-n+1\\\\(m-n)(m+n-1)=0\\\\m=n\ NU\\\\m+n-1=0[/tex]
m+n=1
m=0 si n =1 sau m=1 si n=0
Un alt exercitiu cu matrice gasesti aici: https://brainly.ro/tema/9882190
#BAC2022
#SPJ4