👤
a fost răspuns

Se consideră funcţia [tex]$f:(0,+\infty) \rightarrow \mathbb{R}, f(x)=\frac{2}{\sqrt{x}}-\frac{1}{x}$[/tex].

[tex]$5 p$[/tex] a) Arătaţi că [tex]$f^{\prime}(x)=\frac{1-\sqrt{x}}{x^{2}}, x \in(0,+\infty)$[/tex].
[tex]$5 p$[/tex] b) Determinaţi ecuaţia asimptotei spre [tex]$+\infty$[/tex] la graficul funcţiei [tex]$f$[/tex].

[tex]$5 p$[/tex] c) Calculați [tex]$\lim _{x \rightarrow 1} \frac{f^{\prime}(x)}{x-1}$[/tex].


Răspuns :

[tex]f(x)=\frac{2}{\sqrt{x}}-\frac{1}{x}[/tex]

a)

Iti atasez tabelul de derivate si integrale

[tex]f'(x)=(2x^{\frac{-1}{2}} )'+\frac{1}{x^2} =-x^{\frac{-3}{2}}+ \frac{1}{x^2}=\frac{1}{x^2}-\frac{1}{x\sqrt{x} } =\frac{1-\sqrt{x} }{x^2}[/tex]

b)

Calculam limita spre +∞

[tex]\lim_{x\to +\infty} \frac{2}{\sqrt{x} } -\frac{1}{x} =\frac{2}{\infty} -\frac{1}{\infty}=0-0=0[/tex]

Dreapta de ecuatie y=0 este asimptota orizontala spre +∞

c)

[tex]\\\\ \lim_{x\to1} \frac{\frac{1-\sqrt{x} }{x^2} }{x-1} =\frac{0}{0}\\\\ \lim_{x\to1} \frac{\frac{1-\sqrt{x} }{x^2} }{x-1} = \lim_{x\to1}\frac{1-\sqrt{x} }{x^2(x-1)} = \lim_{x\to1}\frac{1-\sqrt{x} }{x^2(\sqrt{x} -1)(\sqrt{x} +1)} =\lim_{x\to1}\frac{-1}{x^2(\sqrt{x} +1)}=\frac{-1}{1(1+1)}=-\frac{1}{2}[/tex]

Un alt exercitiu cu ecuatia asimptotei gasesti aici: https://brainly.ro/tema/1030418

#BAC2022

Vezi imaginea AndreeaP
Vezi imaginea AndreeaP