Răspuns :
[tex]A(a)=\left(\begin{array}{ccc}1 & 1 & -2 \\ 1 & -2 & 1 \\ a & 1 & 1\end{array}\right)[/tex]
a)
Aratati ca det(A(1))=-9
Inlocuim pe a cu 1 si adaugam primele doua linii ale determinantului
[tex]det(A(1))=\left|\begin{array}{ccc}1 & 1 & -2 \\ 1 & -2 & 1 \\ 1 & 1 & 1\end{array}\right|[/tex]
1 1 -2
1 -2 1
det(A(1))=(-2-2+1)-(4+1+1)=-3-6=-9
b)
Daca suma elementelor matricei B(a) nu depinde de a, rezultatul va fi un numar real
Calculam A(a)A(a)
[tex]A(a)\cdot A(a)=\left(\begin{array}{ccc}1 & 1 & -2 \\ 1 & -2 & 1 \\ a & 1 & 1\end{array}\right)\cdot \left(\begin{array}{ccc}1 & 1 & -2 \\ 1 & -2 & 1 \\ a & 1 & 1\end{array}\right)=\\\\=\left(\begin{array}{ccc}2-2a & -3 & -3 \\ -1+a & 6 & -3 \\ 2a+1 & a-1 & -2a+2\end{array}\right)[/tex]
Adunam elementele matricei si obtinem:
2-2a-3-3-1+a+6-3+2a+1+a-1-2a+2=0 nu depinde de a
c)
[tex]\left\{\begin{array}{l}x+y-2 z=1 \\ x-2 y+z=2, \\-2 x+y+z=3\end{array}\right[/tex]
Observam ca daca adunam ecuatiile obtinem:
x+y-2z+x-2y+z-2x+y+z=1+2+3
0=6, false⇒ sistemul este incompatibil
Un exercitiu cu sistem de ecuatii incompatibil gasesti aici: https://brainly.ro/tema/1025898
#BAC2022