👤
a fost răspuns

Se consideră matricele [tex]$O_{3}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), A(a)=\left(\begin{array}{ccc}1 & 0 & 3 \\ 0 & 1 & a \\ 1 & -a & 0\end{array}\right)$[/tex] şi [tex]$(A(a))^{t}=\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & -a \\ 3 & a & 0\end{array}\right)$[/tex], unde [tex]$a$[/tex] este număr real.

[tex]$5 \mathbf{p}$[/tex] a) Arătaţi că det [tex]$(A(2))=1$[/tex].

[tex]$5 p$[/tex] b) Demonstrați că, pentru orice număr rațional [tex]$q$[/tex], matricea [tex]$A(q)$[/tex] este inversabilă.

[tex]$5 p$[/tex] c) Se consideră matricea [tex]$B(a)=A(a)-(A(a))^{t}$[/tex]. Determinați numerele raționale [tex]$p$[/tex] pentru care [tex]$B(p) B(p) B(p)+5 B(p)=O_{3}$[/tex]


Răspuns :

[tex]A(a)=\left(\begin{array}{ccc}1 & 0 & 3 \\ 0 & 1 & a \\ 1 & -a & 0\end{array}\right)[/tex]

[tex](A(a))^{t}=\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & -a \\ 3 & a & 0\end{array}\right)[/tex]

a)

Calculam det(A(2)), inlocuind pe a cu 2 si adaugand primele doua linii ale determinantului

[tex]det(A(2))=\left|\begin{array}{ccc}1 & 0 & 3 \\ 0 & 1 & 2 \\ 1 & -2 & 0\end{array}\right|[/tex]

                      1     0    3

                      0    1     2

det(A(2))=(0+0+0)-(3-4+0)=0+1=1

b)

Ca o matrice sa fie inversabila trebuie ca determinantul sau sa fie diferit de 0

[tex]det(A(q))=\left|\begin{array}{ccc}1 & 0 & 3 \\ 0 & 1 & q \\ 1 & -q & 0\end{array}\right|[/tex]

                      1     0     3

                      0     1     q

det(A(q))=(0+0+0)-(3-q²+0)=q²-3

Daca q²-3=0, atunci q=±√3, ceea ce nu verifica, deoarece q este numar rational⇒ q²-3≠0⇒ matricea este inversabila

c)

Calculam:

[tex]A(a)-(A(a))^t=\left(\begin{array}{ccc}1 & 0 & 3 \\ 0 & 1 & a \\ 1 & -a & 0\end{array}\right)-\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & -a \\ 3 & a & 0\end{array}\right)=\left(\begin{array}{ccc}0 & 0 & 2 \\ 0 & 0 & 2a \\ -2 & -2a & 0\end{array}\right)[/tex]

[tex]B(a)=\left(\begin{array}{ccc}0 & 0 & 2 \\ 0 & 0 & 2a \\ -2 & -2a & 0\end{array}\right)\\\\\\B(p)=\left(\begin{array}{ccc}0 & 0 & 2 \\ 0 & 0 & 2p \\ -2 & -2p & 0\end{array}\right)[/tex]

[tex]B(p)B(p)=\left(\begin{array}{ccc}0 & 0 & 2 \\ 0 & 0 & 2p \\ -2 & -2p & 0\end{array}\right)\times \left(\begin{array}{ccc}0 & 0 & 2 \\ 0 & 0 & 2p \\ -2 & -2p & 0\end{array}\right)=\left(\begin{array}{ccc}-4 & -4p & 0\\ -4p & -4p^2 & 0 \\ 0 & 0 & -4-4p^2\end{array}\right)[/tex]

[tex]B(p)B(p)B(p)=\left(\begin{array}{ccc}-4 & -4p & 0\\ -4p & -4p^2 & 0 \\ 0 & 0 & -4-4p^2\end{array}\right)\times \left(\begin{array}{ccc}0 & 0 & 2\\ 0 & 0 & 2p \\ -2 & -2p & 0\end{array}\right)=\\\\\\=\left(\begin{array}{ccc}0 & 0 & -8-8p^2\\0 & 0 & -8p-8p^3 \\ 8+8p^2 &8p+8p^3 & 0\end{array}\right)[/tex]

[tex]\left(\begin{array}{ccc}0 & 0 & -8-8p^2\\0 & 0 & -8p-8p^3 \\ 8+8p^2 &8p+8p^3 & 0\end{array}\right)+5\left(\begin{array}{ccc}0 & 0 & 2\\0 & 0 & 2p \\ -2 &-2p & 0\end{array}\right)=\\\\\\\\\\=\left(\begin{array}{ccc}0 & 0 & 2-8p^2\\0 & 0 & 2p-8p^3 \\ -2+8p^2 &-2p+8p^3 & 0\end{array}\right)=O_3[/tex]

2-8p²=0

8p²=2

[tex]p^2=\frac{1}{4}\\\\ p=\frac{1}{2}\ \ si \\\ p=-\frac{1}{2}[/tex]

Un exercitiu similar cu matrice gasesti aici: https://brainly.ro/tema/4677939

#BAC2022

#SPJ4