Explicație pas cu pas:
notăm:
ABC triunghi echilateral
=> AB ≡ BC ≡ AC = a
ABM triunghi echilateral
=> AB ≡ MA ≡ MB = a
ACN triunghi echilateral
=> AC ≡ NA ≡ NC = a
BCP triunghi echilateral
=> BC ≡ PB ≡ PC = a
a) ∢ MAB = ∢ CBA = 60°
=> unghiuri alterne interne
=> AM || BC
b)
BC ≡ AB, AB ≡ AM => AM = 10 cm
BC ≡ AC, AC ≡ AN => AN = 10 cm
MN = AM + AN = 10 + 10 = 20
=> MN = 20 cm
c)
MP = MB + PB = 2a
NP = NC + PC = 2a
MN = MA + NA = 2a
=> MP ≡ NP ≡ MN
=> ΔMNP este echilateral