Răspuns :
[tex]A=\left(\begin{array}{rr}4 & -6 \\ 2 & -3\end{array}\right)[/tex]
a)
Calculam detA, inmultind prima diagonala si o scadem pe a doua
[tex]detA=\left|\begin{array}{rr}4 & -6 \\ 2 & -3\end{array}\right|=-12-(-12)=-12+12=0[/tex]
b)
M(x)=I₂+xA
[tex]M(x)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)+x\left(\begin{array}{rr}4 & -6 \\ 2 & -3\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)+\left(\begin{array}{rr}4x & -6x \\ 2x & -3x\end{array}\right)\\\\M(x)=\left(\begin{array}{rr}1+4x & -6x \\ 2x & 1-3x\end{array}\right)[/tex]
[tex]M(y)=\left(\begin{array}{rr}1+4y & -6y \\ 2y & 1-3y\end{array}\right)[/tex]
[tex]M(x)M(y)=\left(\begin{array}{rr}1+4x & -6x \\ 2x & 1-3x\end{array}\right)\times \left(\begin{array}{rr}1+4y & -6y \\ 2y & 1-3y\end{array}\right)=\\\\=\left(\begin{array}{rr}(1+4x)(1+4y)-12xy & -6y-24xy-6x+18xy \\ 2x+8xy+2y-6xy & -12xy+(1-3x)(1-3y)\end{array}\right)[/tex]
[tex]M(x)M(y)=\left(\begin{array}{rr}1+4x+4y+4xy & -6x-6y-6xy \\ 2x+2y+2xy & 1-3x-3y-3xy\end{array}\right)\\\\M(x)M(y)=\left(\begin{array}{rr}1+4(x+y+xy) & -6(x+y+xy) \\ 2(x+y+xy) & 1-3(x+y+xy)\end{array}\right)=M(x+y+xy)[/tex]
c)
Ne folosim de punctul b, stim ca M(x)M(y)=M(x+y+xy)
M(m)M(n)=M(m+n+mn)
M(m+n+mn)=M(6)
m+n+mn=6
m+n+mn+1-1=6
m+1+n(m+1)=7
(m+1)(n+1)=7
I.
m+1=7
m=6
n+1=1
n=0
II.
m+1=1
m=0
n+1=7
n=6
Un exercitiu similar de bac gasesti aici: https://brainly.ro/tema/2494494
#BAC2022
#SPJ4