Răspuns :
Explicație pas cu pas:
[tex] \frac{x}{y} = 1.5 = \frac{15}{10} = > \frac{x}{y} = \frac{3}{2} [/tex]
a)
[tex] \frac{y}{x} = \frac{2}{3} [/tex]
b)
[tex] \frac{3x}{5y} = \frac{3}{5} \times \frac{x}{y} = \frac{3}{5} \times \frac{3}{2} = \frac{9}{10} [/tex]
c)
[tex] \frac{2x}{3y} = \frac{2}{3} \times \frac{x}{y} = \frac{2}{3} \times \frac{3}{2} = 1 [/tex]
d)
[tex]\frac{2y}{3x} = \frac{2}{3} \times \frac{y}{x} = \frac{2}{3} \times \frac{2}{3} = \frac{4}{9} [/tex]
e)
[tex] \frac{x + y}{x - y} = \frac{ \frac{x + y}{y} }{ \frac{x - y}{y} } = \frac{\frac{x}{y} + 1}{\frac{x}{y} - 1} = \frac{ \frac{3}{2} + 1}{ \frac{3}{2} - 1 } = \frac{3 + 2}{3 - 2} = \frac{5}{1} = 5 [/tex]