👤


2. Se consideră expresia E(x)=(2x+1) ² +(2x-1)²-4(2x²-1), unde x este număr real.
(2p) a) Calculează E(10).
(3p) b) Determină cel mai mic număr natural nenul n pentru care n(ori)E(10) (ori) E(11)......( ori) E(100) este pătratul unui număr natural.


Răspuns :

Răspuns:

E(10) = 6; n = 6

Explicație pas cu pas:

[tex]E(x) = (2x+1)^{2} + (2x-1)^{2} - 4(2x^{2} -1) = (2x+1)^{2} + (2x-1)^{2} - 2(4x^{2} - 1) + 2 =(2x+1)^{2} + (2x-1)^{2} - 2(2x + 1)(2x - 1) + 2 = [(2x + 1) - (2x - 1)]^{2} + 2 = (2x + 1 - 2x + 1)^{2} + 2 = {2}^{2} + 2 = 6 = >E(x) = 6 [/tex]

a)

[tex]E(10) = 6[/tex]

b)

[tex]n \times E(10) \times E(11) \times ... \times E(100) = {m}^{2} [/tex]

[tex]n \times 6 \times 6\times ... \times 6 = {m}^{2}[/tex]

[tex]n \times {6}^{91} = {m}^{2}[/tex]

[tex]n \times {2}^{91} \times {3}^{91} = {m}^{2}[/tex]

[tex] = > n = 6[/tex]