👤
a fost răspuns

Fie ABC un triunghi dreptunghic în A și D € AB astfel încât <ACD congruent cu <BCD. Dacă AB=24 cm și BC=30 cm, aflați lungimea segmentului CD.​

Răspuns :

Explicație pas cu pas:

[tex]AC²=BC²-AB²=30²-24²=324 = > AC=18 \: cm[/tex]

<ACD ≡ <BCD => CD bisectoare

[tex]\frac{AC}{BC} = \frac{AD}{DB} \\ < = >\frac{AC}{AC + BC} = \frac{AD}{AD + DB} \\ \frac{AC}{AC + BC} = \frac{AD}{AB} = > \frac{18}{18 + 30} = \frac{AD}{24} \\ AD = \frac{18 \times 24}{48} = > AD = 9 \: cm[/tex]

[tex]CD²=AD²+AC²=9²+18²=405 = > CD=9 \sqrt{5} \: cm[/tex]