Explicație pas cu pas:
[tex](x + y)^{2} = {x}^{2} + 2xy + {y}^{2} [/tex]
[tex](x - y)^{2} = {x}^{2} - 2xy + {y}^{2} [/tex]
[tex] {x}^{2} - {y}^{2} = (x + y)(x - y)[/tex]
[tex]{(x + y)}^{3} = {x}^{3} + {y}^{3} + 3xy(x + y) [/tex]
[tex]{(x - y)}^{3} = {x}^{3} - {y}^{3}- 3xy(x - y) [/tex]
[tex]{x}^{3} + {y}^{3} = (x + y)( {x}^{2} - xy + {y}^{2} ) [/tex]
[tex]{x}^{3}-{y}^{3} = (x - y)( {x}^{2} + xy + {y}^{2} ) [/tex]
[tex](x + y + z)^{2} = {x}^{2} +{y}^{2} + {z}^{2} + 2(xy + yz + xz)[/tex]