Explicație pas cu pas:
[tex]\sin( \arcsin( \frac{2}{3} ) + \arcsin( \frac{1}{4} )) = \sin(\arcsin( \frac{2}{3})) \times \cos(\arcsin( \frac{1}{4})) + \cos(\arcsin( \frac{2}{3})) \times \sin(\arcsin( \frac{1}{4} ))= \frac{2}{3} \times \sqrt{1 - (\frac{1}{4})^{2} } + \frac{1}{4} \times \sqrt{1 - (\frac{2}{3})^{2}}= \frac{ \sqrt{15} }{6} + \frac{ \sqrt{5} }{12} =\frac{\sqrt{5}(2 \sqrt{3} + 1)}{12} [/tex]
[tex]\cos( \arcsin( \frac{ - 1}{4} ) + \arcsin( \frac{1}{50} ))[/tex]