Răspuns :
Pabc=AB+BC+AC
P=2AB+[tex] \frac{4}{5} [/tex]AC
420= ⁵)2AB + [tex] \frac{4AB}{5}[/tex]
420= [tex] \frac{10AB+4AB}{5} [/tex]
420=[tex] \frac{14}{5}[/tex] ·AB
AB=[tex] \frac{5}{14} [/tex] ·420
AB=150cm
AC=150cm
BC=[tex] \frac{4}{5} [/tex] · 150 = 120cm
P=2AB+[tex] \frac{4}{5} [/tex]AC
420= ⁵)2AB + [tex] \frac{4AB}{5}[/tex]
420= [tex] \frac{10AB+4AB}{5} [/tex]
420=[tex] \frac{14}{5}[/tex] ·AB
AB=[tex] \frac{5}{14} [/tex] ·420
AB=150cm
AC=150cm
BC=[tex] \frac{4}{5} [/tex] · 150 = 120cm
PΔABC = 420 cm
[AB]≡[AC] ⇒ ΔABC is
PΔABC= AB + AC + BC
= AC + AC + BC
420 = 2AC + 4/5*AC
=2AC + 4AC/5
=10AC/5 + 4AC/5
84 = 14AC/5
=14AC
AC = 6 cm
AB + AC + 6 = 420
2AB = 414
AB = 207 cm = AC
[AB]≡[AC] ⇒ ΔABC is
PΔABC= AB + AC + BC
= AC + AC + BC
420 = 2AC + 4/5*AC
=2AC + 4AC/5
=10AC/5 + 4AC/5
84 = 14AC/5
=14AC
AC = 6 cm
AB + AC + 6 = 420
2AB = 414
AB = 207 cm = AC